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Abstract. Future vehicle systems for active pedestrian safety will not only re-
quire a high recognition performance, but also an accurate analysis of the de-
veloping traffic situation. In this paper, we present a system for pedestrian action
classification (walking vs. stopping) and path prediction at short, sub-second time
intervals. Apart from the use of positional cues, obtained by a pedestrian detector,
we extract motion features from dense optical flow. These augmented features are
used in a probabilistic trajectory matching and filtering framework.
The vehicle-based system was tested in various traffic scenes. We compare its
performance to that of a state-of-the-art IMM Kalman filter (IMM-KF), and for
the action classification task, to that of human observers, as well. Results show
that human performance is best, followed by that of the proposed system, which
outperforms the IMM-KF and the simpler system variants.

1 Introduction

Strong gains have been made over the years in improving pedestrian recognition per-
formance. However, the initation of a emergency vehicle maneuvre requires a precise
estimation of the current and future position of the pedestrian with respect to the mov-
ing vehicle. A deviation of, say, 25 cm in the estimated lateral position of the pedestrian
can make all the difference between a “correct” and an “incorrect” maneuvre initiation.
One major challenge is the highly dynamic behaviour of pedestrians, which can change
their walking direction in an instance, or start/stop walking abruptly. As a consequence,
prediction horizonts for active pedestrian systems are typical short; even so, small per-
formance improvements can produce tangible benefits. For example, accident analysis
[15] shows that being able to initiate emergency braking 0.16 s (4 frames @ 25 Hz) ear-
lier, at a Time-to-Collision of 0.66 s, reduces the chance of incurring injury requiring
hopital stay from 50% to 35%, given an initial vehicle speed of 50 km/h.

The paper studies the case of a pedestrian walking towards the road curbside, and
poses the question whether the pedestrian will cross or not. See Figure 1. This setting
is inspired by an earlier human factors study [16], where participants were asked the
same question, upon viewing similar video content. This study varied the amount of
visual information provided to the participants and examined its effect on human clas-
sification performance; in the baseline case, the pedestrian was fully visible, whereas
in other cases, parts of the images were masked out. Masking the complete pedestrian,
and leaving only positional information (bounding box), turned out to decrease human
accuracy markedly.
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Fig. 1. Everyday problems vehicle drivers are faced with: Will the pedestrian cross?

Besides action classification, the aim of this paper is to accurately predict the pedes-
trian path. For this, an input pedestrian trajectory fragment is matched against pre-
viously stored pedestrian trajectories in a database. The retrieved trajectories in the
database are used for extrapolation and path prediction. The intuition is that more com-
plex dynamics (e.g. the process of a pedestrian stopping) are more accurately captured
by such learning-based approaches than with generic modeling approaches relying on
constant motion assumptions.

2 Previous Work

In this section, we focus on previous work on pedestrian motion models and path pre-
diction. The reader is referred to [9, 10] for surveys on pedestrian detection. There is
furthermore a wealth of work on human activity recognition [18], including some on
detecting unusual pedestrian motion patterns (e.g. [14]).

One way to perform path prediction relies on closed-form solutions for Bayesian
filtering; in the Kalman Filter (KF) [3], the current state can be propagated to the fu-
ture by means of the underlying linear dynamical model, without the incorporation of
new measurements. The same idea can be applied to filter extensions, which involve
multiple linear dynamical models, i.e. to the Integrated Multiple Model Kalman Filter
(IMM-KF) [3]. An alternative approach for path prediction involves stochastic models.
Possible trajectories are generated by Monte Carlo simulations, taking into account the
respective dynamical models. For example [1], use Bayesian filtering by means of par-
ticle filtering and a constant motion model. [8] distinguishes lateral and longitudinal
pedestrian velocity and models these independently by a random walk. In [19] pedes-
trian motion is modeled by means of four states of a Markov chain, corresponding to
standing still, walking, jogging and running. Each state has associated probability distri-
butions magnitude and direction of pedestrian velocity; the state changes are controlled
by various transition probabilities. More recently, complex pedestrian motion models
also account for group behaviour and spatial lay-out (e.g. entry/exit points) [2].

The limited amount of available training data precludes the use of modeling ap-
proaches which compute joint probability distributions over time intervals. Indeed, most
pedestrian motion models consists of states that correspond to single time steps, and
are first-order Markovian. This potentially limits their expressiveness and precision.
In contrast [4] describe an extension of particle filtering to incrementally match tra-
jectory models to input data. It is used for motion classification of 2D gestures and
expression. A further development [17] adds an efficient tree search in the context of
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articulated 3D human pose recovery. In [13] this technique is applied to vehicle motion
prediction, utilizing the quarternion-based rotationally invariant longest common sub-
sequence (QRLCS) metric for trajectory matching. [5] propose a multi-level prediction
model, in which the higher levels are long-term predictions based on trajectory cluster-
ing matching, whereas the low level uses an Auto-Regressive model to predict the next
time step.

The main contribution of this paper is a system for pedestrian action classification
(walking vs. stopping) and accurate path prediction from a moving vehicle, at short
time intervals. We borrow from the efficient trajectory matching approaches of [13, 17]
but augment the underlying features to include motion cues. The latter is motivated by
the before-mentioned study [16]. For our use in trajectory matching, however, we need
to derive a low-dimensional optical flow representation. We use real video data, which
results in a realistic modeling of sensor uncertainty.

3 Proposed System

An overview of the proposed system is given in Figure 2. The feature extraction step
uses dense stereo [11] and dense optical flow [20] data computed over the bounding
boxes returned by a pedestrian detector. Lateral and longitudinal position of the pedes-
trian is obtained with the center of the detector box and median disparity values inside
the box, respectively. Vehicle ego motion is compensated by rotation and translation of
positions to a global reference point using velocity and yaw-rate measurements from
on-board sensor data. Motion features involve a low-dimensional histogram representa-
tion of optical flow. Measured pedestrian positions and motion features are subsequently
used in a trajectory matching and filtering framework. From the filter state and informa-
tion about the class labels of the matched trajectories, a future pedestrian position and
action is derived.

Motion Features. We propose a low dimensional feature that captures flow varia-
tions on the pedestrian legs and upper body. In order to operate from a moving vehicle
additional invariance to pedestrian distance and vehicle motion is important. Features
are designed to allow bounding box localization errors from a pedestrian detection sys-
tem. Figure 3 illustrates the feature extraction steps. Vehicle velocity and yaw-rate mea-
surements from on-board sensor data in combination with stereo measurements are used
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Fig. 2. Overview of the proposed system for pedestrian action classification and path prediction.
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Fig. 3. Overview of the motion feature extraction procedure.

to compute the ego-motion compensated optical flow field. Flow vectors are normalized
with the camera cycle time and measurements from dense stereo for robustness to frame
drops and invariance to different pedestrian distances to the camera. This normalized
motion field is used to extract features given a bounding box detection and distance esti-
mation zped from a pedestrian detection system. To ensure that the pedestrian is located
in the box for all possible limb extensions and slight localization errors a bounding box
aspect ratio of 4:3 is used. Motion vectors not belonging to the pedestrian body are
suppressed by using only values at a depth similar to the estimated pedestrian distance.
Remaining values in the motion field are used to compute the median object motion
and extract orientation histograms. To capture motion differences between torso and
legs the bounding box is split into an upper and lower sub-box. For each sub-box the
median motion is removed to compensate the pedestrian ego motion. Resulting orien-
tation vectors v = [vx, vy]

T are assigned to bins b ∈ [0, 7] using their 3600 orientation

θ = atan2(vy, vx) and bin index b =
⌊

θ
π/4

⌋
. Bin contributions are weighted by their

magnitude and resulting histograms are normalized with the number of contributions. A
feature vector is formed by concatenating the histogram values and the median flow for
the lower and upper box. Dimensionality reduction of the feature vector is archived by
applying principal component analysis (PCA). The first three PCA dimensions with the
largest eigenvalue are used as final histograms of orientation motion (HoM) features.

Probabilistic Trajectory Matching. A pedestrian trajectoryX is represented using
the ordered tuples X = ((x1, t1), . . . , (xN , tN )). For every timestamp ti the state xi
consists of the lateral and longitudinal position of the pedestrian and additional features
extracted from optical flow (Figure 4(a)). For motion prediction retrieval, it is possible
to compare each trajectory in a motion database with an observed history using a sim-
ilarity measure. With the Quaternion-based Rotationally Invariant Longest Common
Subsequence (QRLCS) metric [13] the optimal translation and rotation parameters to
superimpose two trajectories are derived. The distance distQRLCS(A,B) ∈ [0, 1] be-
tween two trajectories is given by the number of possible assignments determined by
an ε area around each trajectory state, normalised by the number of trajectory states.
Figure 4(a) illustrates this matching process. We replaced this greedy search by a prob-
abilistic search framework [13, 17] where the search time depends on the number of
sampling points.
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Fig. 4. a) System trajectory with history of length d containing position and feature information
for every entry is matched to the training database. Resulting matching position and similarity
distance to trajectories in the training database describes a possible trajectory course and class
label. b) Tree representation of the trajectory training database. Leaf nodes represent trajectory
snippets of fixed length. Similar trajectories are search by traversing the tree using the trajectory
descriptors for every level.

Given a motion history M1:t up to the current time step t, the probability that a
future pedestrian state φT occurs is computed by

p(φT |M1:t) = η p(M1:t|Ψt)
∫
p(Ψt|Ψt−1) p(Ψt−1|M1:t−1) dΨt−1 (1)

with a normalisation constant η and the current state Ψt which represents a sequence
of trajectory points including position, optical flow features and its history over a tem-
poral sliding window with a manually defined number of time steps d. p(φT |Ψt) is the
probability of observing a future state φT , and is determined from the motion database.
This distribution p(φT |M1:t) is represented by a set of samples or particles {Ψ (s)

t }S ,
which are propagated in time using a particle filter [4]. Therefore, each particle Ψ (s)

t

represents a sub-trajectory for the current state.
A set of overlapping sub-trajectories (snippets, e.g. [12]) with fixed number of tra-

jectory points d is created from the motion database. By piling the features for each
trajectory point in a snippet into a description vector and applying the PCA method to
these vectors, their principal dimensions can be ordered according to the largest eigen-
value. The resulting transformed description vector v is used to build a binary tree.
For each level l the snippet is assigned to the left or right sub-tree depending on the
sign of vl. Figure 4(b) illustrates this search tree. Particle prediction is performed by
a probabilistic search in the constructed binary tree and a lookup for the next state
in the motion database. The distribution p(M1:t|Ψt) represents the likelihood that the
measurement trajectory M1:t can be observed when the model trajectory is given. In
the context of particle filters, this value corresponds to the weight of a particle and is
approximated using w(s) = 1 − distQRCLS for each particle Ψ (s)

t . Each particle is a
representation of the assumed current pedestrian state with an assigned likelihood.

Action Classification and Path Prediction. The distribution of the predicted state
p(Φt|M1:t) is approximated by means of the particle filter. An estimated state Φ(s)

T

representing the pedestrian state in the future T = t + ∆T can be derived by looking
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Sequences / Frames vehicle standing vehicle moving
ped. stopping 12 / 1526 5 / 587
ped. walking 9 / 1686 4 / 750

Table 1. Number sequences and frames for each class with moving and non-moving ego vehicle.

ahead on the associated trajectories for the current state Ψ (s)
t . This results in many

hypotheses which are compensated using a weighted mean-shift algorithm [6] with a
Gaussian kernel and weights w(s) ∼ p(Φ(s)

T |M1:t).
As the final predicted state Φ∗

T the cluster center with the highest accumulated
weight is selected. The trajectory database contains two classes of trajectory snippets,
the class Cs in which the pedestrian is stopping and the class Cw where the pedestrian
continues walking. For the predicted object state Φ∗

T derived using cluster members
L = {Φ(l)

t } and the corresponding weight w(l) the stopping probability can be approx-
imated using:

p(Cs|L) ≈

∑
Φ
(l)
t ∈Cs

w(l)∑
Φ
(l)
t ∈Cs

w(l) +
∑
Φ

(l)
t ∈Cw

w(l)
. (2)

4 Experiments

Video data of two scenario types was recorded using a stereo camera (22 fps) on-board
a vehicle. The first scenario features the stopping of a pedestrian at the curbstone. In
the second scenario, the pedestrian crosses the street. Recorded data consisted of runs
where the vehicle is stationary at a distance of 15 m to 17 m to the pedestrian and
runs where the vehicle is moving at speeds of 20 − 30 km/h. Tables 1 summarizes the
recorded data with four different pedestrians.

Pedestrians were shape labeled to derive the ground-truth position in the world.
The median disparity value on the pedestrian upper body and the center of gravity of
the shape is used to project the 3D position. For each trajectory where the pedestrian is
stopping the moment of the last placement of the foot is labeled as the stopping moment.
By definition, all frames earlier to this event will have a time-to-stop value (TTS in
frames) greater than zero. Frames after the stopping moment have a TTS value smaller
than zero. In sequences where the pedestrian continues walking the closest point to the
curbstone (with closed legs) is labeled. Analogous to the TTS definition, it is called
time-to-curb value (TTC). Since the focus of the paper is not a particular pedestrian
detection system, we first provide as input to the evaluated methods the ground truth
2D bounding boxes perturbed by noise. Artificially generated uniform noise is added to
the height and center of the 2D bounding boxes up to 10% of the original height value.

Analyzing walking trajectories shows an average gait cycle of 10 to 14 frames for
different pedestrians. A trajectory database as described in previous Section is generated
in a sliding window fashion to contain sub-trajectories with a fixed length of ten frames.
For test trajectories a history of 14 frames is used to capture gate cycle variations.
Trajectories in which the pedestrian did not stop as well as trajectory slices with a
TTS > 20 (twice the gate cycle) are member of the class Cw. The stopping class Cs
consists of the remaining slices.
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Evaluated Models and Parameter Settings. The particle filter approximates the
current probability density with S = 400 particles and uses a search deviation parame-
ter of β = 0.05 for the tree search (see [13]). The mean shift position procedure operates
with a kernel width value h = 0.1. Two feature combinations for the PF are compared:
The base configuration uses the lateral and longitudinal object position (Pos) for the
trajectory matching. The second combination uses the median horizontal object flow
(MFlowU) in the image plane and additional motion features (HoM) described in pre-
vious Section. For the evaluation the training and testing data has been processed using
leave-one-out cross validation. In order to ensure the optimal search result by the PF,
the proposed system is compared against a full-search (i.e. brute force, BF) method over
all training trajectories. For each trajectory slice from the training set, the BF method
selects the best hypothesis based on the weight value, equal to the particle weights in
the PF system.

As a second model of comparison to the proposed PF system, we use the state-of-
the-art Integrated Multiple Model Kalman Filter (IMM-KF) [3]. Two process models
describing pedestrian motion are used: A steady walking pace can be represented with
the constant velocity (CV) model with process noise parameter qCV . For non-moving
pedestrians the constant position (CP) model with qCP applies. For the following eval-
uation qCV = 0.009 and qCP = 0.01 has been derived from the set of training trajecto-
ries, with respect to the positions minimum mean-RMS error. Each model is provided
with the same 3D position data as for the PF as a measurement input. In preliminary
experiments a constant acceleration model (CA) was tested as well, but did not produce
acceptable results. As mentioned in [3], this can be explained by the relatively short time
span of the deceleration process, a comparatively large measurement noise and the use
of the second derivative of the position data to estimate the deceleration. Measurement
noise for each test trajectory is computed from the training trajectories and yields a stan-
dard deviation of σz = 0.25 m in longitudinal and σx = 0.15 m in lateral direction. The
Markov matrix P describing the transition probabilities between the CV and CP model
was derived from the available training data P := [0.999, 0.001; 0.001, 0.999]. Choos-
ing larger values for the model transitions result in more frequent, undesired switches,
especially with noisy measurements.

Pedestrian Action Classification. We first tested the ability of various systems to
classify pedestrian actions, i.e. whether the pedestrian will cross or not. Figure 5 illus-
trates the mean performance of each system with different feature sets on stopping and
walking test trajectories; depicted is the estimated probability of stopping, as a function
of TTS or TTC. For the PF and BF approaches the stopping probability is approxi-
mated as described in previous Section. For the IMM-KF filter the probability of the
CP model is used. To put the performance of the systems in context, we also evalu-
ated human performance. Video data was presented to several human observers using a
graphical user interfaces, where playback was automatically stopped at different TTC
or TTS moments (20, 11, 8, 5, 3). For each test, the observers had to decide whether
the pedestrian will stop at the curbstone or cross the street and provide a confidence us-
ing a slider ranging from 0 to 1. Sequence and playback stopping point were randomly
selected before being presented, to avoid the effect of re-identification.
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(a) (b)

Fig. 5. Estimated probability of stopping over time for (a) stopping or (b) walking test trajectory
(averaged over all respective sequences.

(a) (b)

Fig. 6. Classification accuracy of the different systems over time. (a) Results for the jittered
ground-truth bounding boxes. (b) Results for the bounding boxes of a HOG detector.

On trajectories where the pedestrian continues walking, all systems show a low and
relatively constant stopping probability. BF and PF results for different feature com-
binations show a similar performance. The CV model for the IMM-KF filter remains
more likely all time. On trajectories where the pedestrian is stopping, all systems ini-
tially start with a low stopping probability, since stopping is preceded by walking. But
about 11 frames before the stopping event the confidence increases more markedly.
Class membership of an input trajectory for each time instant is assigned by thresh-
olding the observed stopping probability (cf. Figure 5). Based on the training set, we
selected for each system a threshold that minimizes its classification error (i.e. stopping
classified as walking and vice versa) over all sequences and time instants. Figure 6 il-
lustrates the classification accuracy using these “optimal” thresholds. Human estimates
of the pedestrian action class outperforms current methods. The proposed system using
the feature combination Pos + HoM + MFlowU dominate the classification accuracy
compared to other evaluated competetive models at all times. An accuracy of 0.8 in
classifying the correct pedestrian’s action is reached 570 ms and 180 ms before a pos-
sible standstill by the human and proposed system; it is only reached after the possible
standstill with the other methods, due to sensor noise.
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Walking Stopping
0 3 5 11 17 0 3 5 11 17

IMM-KF Mean 0.62 0.73 0.80 1.06 1.33 0.51 0.66 0.77 1.14 1.54
± Std 0.51 0.57 0.61 0.73 0.87 0.48 0.57 0.65 0.93 1.23

Pos Mean 0.32 0.42 0.48 0.70 0.89 0.25 0.35 0.43 0.63 0.86
± Std 0.09 0.14 0.18 0.29 0.34 0.07 0.11 0.16 0.22 0.26

Pos+HoM Mean 0.37 0.49 0.56 0.79 1.07 0.28 0.04 0.46 0.66 0.88
+MFlowU ± Std 0.17 0.21 0.25 0.31 0.39 0.11 0.18 0.22 0.31 0.43

Walking Stopping
0 17 0 17

0.64 2.37 0.38 1.52
0.69 2.52 0.28 1.26
0.28 0.68 0.25 0.83
0.25 0.49 0.17 0.42
0.43 0.99 0.31 0.89
0.45 0.79 0.20 0.61

Table 2. Mean and standard deviation of the RMSE (in m) for walking and stopping trajectories
with different systems and prediction horizons (#frames). left: Results using the jittered ground
truth bounding boxes right: Results using recognitions from a pedestrian detector.

Path Prediction Accuracy. The second set of experiments evaluates the world lo-
calization accuracy of path prediction for different prediction horizons for every time
step (i.e. frame). The predicted object position for the PF is computed as described
in previous Section by a look-up on the subsequent parts of the matched trajectories.
Position predictions of the IMM-KF are derived by predicting the current filter state
without additional measurement updates. Given a prediction time step inside the range
[20,−5] frames, where frame 0 denotes the manually labeled TTS/TTC moment, the
predicted localization error is evaluated for different prediction horizons.

Localization error for the different prediction horizons are summarized in Table 2.
As can be seen, the IMM-KF has a higher localization error for any prediction hori-
zon than PF feature combinations. Because the IMM-KF uses the filtered velocity for
path prediction, the increasing localization error can be explained by erroneous velocity
estimations, without new measurements the current velocity estimates are propagated
unchanged. The proposed system outperforms the IMM-KF by a factor of about 1.7 and
1.2 in stopping and walking situations, respectively, in terms of the reduction of mean
RMS. The addition of motion features does not result in improved accuracy, likely be-
cause the right trajectory snippets in the database are already found with position-only
features; accuracy gains can be expected by a larger training set.

Evaluation using a Real Pedestrian Detector. We also evaluated performance us-
ing the bounding boxes provided by a state-of-the-art HOG pedestrian detector [7].
Missing detections were filled in using a basic correlation tracker (one sequence had
to be excluded from the evaluation because of 11 successive missing detections). For
IMM-KF systems the measurements noise derived from training sequences has been ad-
justed to σz = 0.48 m and σx = 0.37 m. Process noise was left unchanged. We found
that the position and height error of the detector boxes compared to the ground truth is
normally distributed with a standard deviation of 5% of the box height but with small
number of outliers with larger errors. These outliers affect both position prediction and
classification performance of the IMM-KF method (cf. Figure 6(b) and Table 2). For
the IMM-KF the outliers lead to frequent model switches resulting in a less accurate
action class decision and velocity estimation. Classification performance of all meth-
ods decreases compared to the previous experiments. With the particle filter approach
no significant change in the localization accuracy is observed compared to the results
obtained previously; we attribute this to the robustness of the QRLCS metric to outliers.
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5 Conclusion
We presented a system for short-term pedestrian action classification and path pre-
diction, that makes use of learned, labeled trajectory data. On the task of classifying
whether a pedestrian nearing the curb side will stop, human performance was best,
followed by the proposed system, and on third spot the state-of-the-art IMM-KF and
simpler system variants, without an augmented motion feature set. Regarding the path
prediction accuracy, our system leads to a siginificant lower position error, especially
for large prediction horizons. Future work will include the integration of scene knowl-
edge and further cues used by humans to predict the intention of pedestrians.
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