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Abstract— The recognition and prediction of situations is an
indispensable skill of future driver assistance systems. This
study focuses on the recognition of situations involving two
vehicles at intersections. For each vehicle, a set of possible
future motion trajectories is estimated and rated based on
a motion database for a time interval of 2–4 seconds ahead.
Realistic situations are generated by a pairwise combination of
these individual motion trajectories and classified according to
nine categories with a polynomial classifier. In the proposed
framework, situations are penalised for which the time to
collision significantly exceeds the typical human reaction time.
The correspondingly favoured situations are combined by a
probabilistic framework, resulting in a more reliable situation
recognition and collision detection than obtained based on inde-
pendent motion hypotheses. The proposed method is evaluated
on a real-world differential GPS data set acquired during a test
drive of 10 km, including three road intersections. Our method
is typically able to recognise the situation correctly about 1–2

seconds before the distance to the intersection centre becomes
minimal.

I. INTRODUCTION

The recognition of the situation into which a vehicle

is currently involved is an important information for an

advanced driver assistance system (ADAS). The goal of such

systems is to increase the passenger comfort and safety

by supporting the driver with environmental information

such as the current and expected future behaviour of traffic

participants and obstacles. Of particular interest are coop-

erative situations, where an ADAS not only estimates and

predicts the motion states of the traffic participants but

also considers the possible interaction behaviour between

them. Especially, manoeuvres at intersections with traffic

lights involving oncoming vehicles may represent a potential

hazard for the own vehicle e.g. due to distractions of other

traffic participants. A classification of the current interaction

can help to inform the driver about the situation “anticipated”

by the vehicle. It may even be able to correct erroneous

individual motion predictions and thus reduce false alarms.

To our knowledge, the topic of recognition of situation

classes in the context of cooperative vehicles has not been

studied extensively yet. Huang et al. [1] apply Dynamic

Belief Networks (DBNs) to make inferences about symbolic

traffic events such as lane changes or stalled vehicles. In

the case of an occurrence of multiple objects, each vehicle

is assigned its own DBN. Vehicle motion trajectories are
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extracted from image sequences using a Kalman filter. Oliver

et al. [2] recognise the driver behaviour with a coupled

Hidden Markov Model (CHMM). Although only a one-way

influence from the surrounding environment to the driver

is assumed, an extension to mutual object interactions is

possible with a CHMM [3], [4].

Determining a certain situation class for a dynamic sce-

nario is closely related to the field of symbolic gesture

recognition. Nickel and Stiefelhagen [5] divide a hand ges-

ture into three atomic states (begin, hold, end) and use

a Hidden Markov Model (HMM) for the recognition of

pointing gestures. A particle filter framework for gesture

recognition is proposed by Black and Jepson [6], who model

gestures as temporal trajectories of the velocities of the

tracked hands.

In an ADAS, road safety is an important research issue.

This requires reliable methods for predicting the behaviour of

traffic participants considering their mutual relations. Broad-

hurst et al. [7] plan motion trajectories using a Monte Carlo

sampling method. They also infer possible future motion

states of other traffic participants. An extension is proposed

by Eidehall and Petersson [8], who determine the threat

level of a traffic scene. Althoff et al. [9] predict potentially

hazardous situations based on stochastically reachable sets of

traffic participants by defining discrete actions, e.g. accelera-

tion or breaking. They also take into account multiple traffic

participants. Batz et al. [10] recognise dangerous situations

in a traffic scenario within a cooperative group of vehicles in

a simulated environment. They use Extended and Unscented

Kalman Filters to obtain vehicle trajectories and predict the

vehicle motion for a prediction horizon of 1 s. For prediction,

they also include the shape of the road and the positions of

obstacles and other vehicles.

Large et al. [11] cluster a set of trajectories in order to

retrieve typical motion patterns. These patterns are used for

motion planning and prediction of robots and vehicles. John-

son and Hogg [12] represent a set of pedestrian trajectories

using a neural network combined with vector quantisation.

The authors suggest an event recognition method using

probability densities which are determined by the distribution

of the prototype vectors, but they do not evaluate the system.

Hu et al. [13] apply a hierarchical clustering algorithm to re-

trieve typical motion patterns from a given set of trajectories.

Each motion pattern is represented by a chain of Gaussian

distributions which are used for statistical anomaly detection

and behaviour prediction. Croitoru et al. [14] present a non-

iterative 3D trajectory matching framework based on shape

signatures. Their approach is invariant to translation, rotation,

and scale. They apply their system to 3D trajectories for



which the beginning and the end are known.

In this study we propose a framework for recognition

of intersection situations involving two oncoming vehicles.

The basis for this framework is a computationally efficient

implementation of the long-term motion prediction method

presented in [15], which is applied to each vehicle separately.

A database of previously acquired vehicle motion patterns

(trajectories) is used for a long-term prediction (∼2 s) for

each vehicle independently (cf. Section II). Subsequently,

the interaction behaviour of the traffic participants is taken

into account by a situation classifier (cf. Section V). The

proposed framework is evaluated on a real-world differential

GPS data set (cf. Section VI). The results are summarised

in Section VII.

II. MOTION REPRESENTATION AND MOTION DATABASE

We represent the motion patterns of vehicles by tra-

jectories, which are defined as ordered tuples X =
((x1, t1), ..., (xN , tN )) combining states xi with a time

stamp ti. Therefore, each trajectory element xi describes the

current state of the tracked object over time. This representa-

tion does not depend on a specific sensor type, and parts of xi

may originate from different types of sensors. When applied

to vehicle motion, the basic information is the object position

in the 2D plane and the orientation angle relative to the ego-

vehicle, here termed yaw angle. Furthermore, we found it

useful to additionally encode the temporal derivatives, i.e.

the velocity and the yaw rate, in the trajectory.

Humans are able to learn motion patterns and to predict

the behaviour of traffic participants fairly accurately over

time when the history of the moving objects is known.

Our basic approach in this study is to adopt this capability

of learning motion patterns by building a motion database

consisting of observed trajectories. A combination of these

reference trajectories from multiple vehicles leads to an early

recognition of the current situation.

III. MOTION COMPARISON

Our approach requires an efficient matching technique for

trajectories in order to infer a prediction of the motion states.

The Longest Common Subsequence (LCS) metric [16] on

trajectories has been shown to be an adequate metric, but is

not capable of comparing trajectories under different rotation

and translation conditions. These properties are necessary

because the similarity of motion patterns does not depend on

the initial position and orientation. We thus adopt the LCS

metric and introduce the property of rotational invariance

using the method by Horn [17], which finds the optimal or-

thogonal transformation to superimpose two point sets based

on quaternions. This optimisation method is computationally

more efficient than the approach proposed in [15].

A. Longest Common Subsequence (LCS)

The LCS metric was introduced in the field of string

matching and yields the length of the longest common

substring contained in two strings. To apply this technique

to trajectories, a similarity matching function between two

states (points) ai and bj from the given trajectory points

(ai, ta,i) ∈ A and (bj , tb,j) ∈ B has to be defined. In

the context of string matching algorithms, the similarity

between two single characters is defined according to their

equality. For the trajectory points ai and bj we define a

fixed decision boundary ε with values in each dimension d

and apply a linear function in the range [0, ε(d)] to obtain

the distance between ai and bj , where L1(·) denotes the L1

norm (Manhattan distance):

dist(ai,bj) =







0 if ∃d ∈ D : L1(a
(d)
i , b

(d)
j ) > ε(d)

1
D

∑D
d=1

(

1 − L1(a
(d)

i
,b

(d)

j
)

ε(d)

)

otherwise

(1)

The sizes of the trajectories A and B are denoted by

NA and NB , respectively, corresponding to the num-

ber of motion states they comprise, and the sequence

[(a1, ta,1), . . . , (aNA−1, ta,NA−1)] by head(A). We then de-

fine the LCS on trajectories as follows:

LCS(A, B) =






















0 if NA = 0 ∧ NB = 0
LCS(head(A), head(B)) + dist(aNA

,bNB
)

if dist(aNA
,bNB

) 6= 0
max{LCS(head(A), B), LCS(A, head(B))}

otherwise

(2)

The distance between two trajectories A and B can then be

obtained by

distLCS(A, B) = 1 − LCS(A, B)

min{NA, NB} (3)

with distLCS(A, B) ∈ [0, 1].

B. Quaternion-based Rotationally Invariant LCS (QRLCS)

The LCS can be computed with the dynamic programming

(DP) algorithm in O(n2) time using tables where partial

(optimal) results of the algorithm are stored. Each partial

LCS distance in the DP table is optimal for the given (sub-)

trajectories. The optimal, partial translation and rotation is

obtained by regarding the (sub-) trajectories as two point

sets in which the point-to-point assignments are given by

the DP table. Hence, the rotation angle and both the mean

values for each set are computed incrementally.

The best translation of a trajectory A to a trajectory B

can be obtained using the mean values µa and µb of the

two point sets in the xy plane. T denotes the number of

assignments:

µa,T =
1

T

T
∑

t=1

at =
T − 1

T
µa,T−1 +

1

T
aT (4)

For the optimal rotation, Horn [17] provides a closed-form

solution for the least-squares problem of absolute orientation

with quaternions. A quaternion can be considered as a

complex number with three different imaginary parts or

the combination of a scalar with a 3D Cartesian vector,

q̇ = q0 + iqx + jqy + kqz ≡ [q0,q]. It can be used as a

rotation operator on a three-dimensional vector x as follows,



where vectors are treated as quaternions with zero scalar

component:

[0,xR] = q̇[0,x]q̇−1. (5)

A rotation quaternion can be constructed when the rotation

angle θ and the three-dimensional rotation vector n are

known:

q̇ =

√

1 + cos θ

2
+

sin θ
√

2(1 + cos θ)
(inx + jny + knz) (6)

Because of the reasonable flat-world assumption the rotation

vector can be set to the fixed value n = [0, 0, 1]. For the

rotation in a plane, Horn [17] suggests an efficient method

where the rotation vector from two given point sets can be

constructed using implicit trigonometric values:

sin θ =
S√

S2 + C2
, cos θ =

C√
S2 + C2

. (7)

By rotating the point sets (trajectories) up to an assignment

T around their mean centres µa,T and µb,T , the auxiliary

variables S and C become

ST =

〈(

T
∑

t=1

(at × bt) − T (µa,T × µb,T )

)

,n

〉

(8)

CT =

T
∑

t=1

〈at,bt〉 − T
〈

µa,T , µb,T

〉

, (9)

where 〈·, ·〉 and × denote the dot product and the cross

product, respectively. As a result, only the incremental parts

µa,T and µb,T (Eq. (4)),
∑T

t=1(at × bt) (from Eq. (8))

and
∑T

t=1 〈at,bt〉 (from Eq. (9)) have to be stored at each

assignment test in the DP table to guarantee the best rotation

and translation.

IV. PROBABILISTIC SEARCH IN MOTION DATABASE

For motion prediction retrieval, it is possible to compare

each trajectory in the motion database with an observed his-

tory using the QRLCS motion comparison method described

in Section III. However, this is not very efficient when the

database becomes large, e.g. because of adding new observed

motions at runtime. Hence, we replaced this greedy search

by a probabilistic search framework adapted from Sidenbladh

et al. [18], where the time needed for the search only depends

on a specified number of sampling points.

The value p(φT |M1:t) denotes the probability that a future

vehicle state φT occurs, given a motion history M1:t up to

the current time step t:

p(φT |M1:t) = p(φT |Ψt) p(Ψt|M1:t) (10)

where p(φT |Ψt) is the probability of observing a future state

φT , given the current state Ψt, and is determined from the

motion database. The future state φT can also be regarded as

a series of future poses, i.e. a future trajectory. The current

state Ψt represents a sequence of trajectory points including

the position and the current time t and its history over a

given travelled distance d.

Applying the Bayes Rule on the remaining distribution

p(Ψt|M1:t) results in an estimation of the current state based

on the current measurement and the previous states according

to

p(φT |M1:t) = η p(M1:t|Ψt)
∫

p(Ψt|Ψt−1) p(Ψt−1|M1:t−1) dΨt−1

(11)

with η as a normalisation constant. This distribution is

represented by a set of samples or particles {Ψ(s)
t }S, which

are propagated in time using a particle filter [6]. Therefore,

each particle Ψ
(s)
t represents a sub-trajectory for the current

state. According to [18], it is sufficient to sample the particles

from the distribution p(Ψt|Ψt−1) in a motion database. The

method constructs a binary tree over the motion database and

performs the prediction step by a probabilistic search of the

particles in the tree.

The distribution p(M1:t|Ψt) represents the likelihood that

the measurement trajectory M1:t can be observed when

the model trajectory is given. In the context of particle

filters, this value corresponds to the weight of a particle

and is constructed as the product of individual normalised

contributions as follows. The first part is the QRLCS value

describing the distance between the observed history and

a particle, the second and third one are penalty terms for

differences in velocity and yaw angle, respectively, and the

last term takes into account the road topology and penalises

future trajectories leading into the edge of the road.

Each particle is a representation of the assumed current

object state with an assigned likelihood and yields a future

trajectory by a lookup in the reference trajectory contained

in the motion database.

V. SITUATION CLASSIFICATION

A situation depends on the temporal behaviour of one or

more traffic participants usually acting dependently on each

other. The motion prediction method described in section IV

yields several future trajectories, i.e. prospective vehicle

movements, for each traffic participant. The method also

provides a likelihood p(φT |M1:t) for each future trajectory

φT based on the previously observed motion history M1:t

according to Eq. (10).

For simplification, it is assumed in the following sections

that two vehicles A and B approach each other from opposite

directions of an intersection in the form of two crossing roads

(“x-intersection”, cf. Fig. 3(a)). The previously computed

probability distribution p(φT |M1:t) for each vehicle does not

depend on the movements of other vehicles, i.e. possible

future trajectories of other vehicles were not taken into

account in Section III for the prediction of a specific vehicle.

In the context of the particle filter, at every time step the

motion predictions yields for both vehicles a set of tra-

jectories X
(1)
A , ..., X

(N)
A and X

(1)
B , ..., X

(M)
B with associated

likelihoods P
(1)
A , ..., P

(N)
A and P

(1)
B , ..., P

(M)
B . A trajectory

pair (X
(n)
A , X

(m)
B ) represents one possible situation with the



occurrence probability P (nm) = P
(n)
A P

(m)
B if the vehicle

movements are regarded as independent.

Furthermore, it is assumed that the vehicles are able to

turn right (R), turn left (L), or drive straight on (G), which

results in a set Ω of possible situation classes

Ω = {LL, LG, LR, RL, RG, RR, GL, GG, GR}, (12)

where in each pair the ith character denotes the motion of

the ith vehicle.

Each predicted pair of motion trajectories (X
(n)
A , X

(m)
B )

yields a so-called multiple participant trajectory (MPT)

T (nm) which consists of difference components of the yaw

angle and velocity (two dimensions) of two vehicles. A

Chebyshev decomposition [19] is applied to these features,

which results in coefficient vectors T
(nm)
c . In order to infer

the current situation class, a polynomial classifier [20] is

trained on a labelled set of MPTs, such that it returns a

probability Qk(T
(nm)
c ), k = 1, . . . , K , for each of the K

situation classes.

The overall probability W (k) for situation class k is given

by

W (k) = ηw

N
∑

n=1

M
∑

m=1

ρ(nm) P (nm) Qk(T(nm)
c ), (13)

where ηw is a normalisation constant. In Eq. (13), we extend

the occurrence probability P (nm) by an “interaction variable”

ρ(nm). Assuming that the trajectories associated with T
(nm)
c

are independent of each other, ρ(nm) becomes 1. Normally

this is not the case because drivers tend to avoid potentially

hazardous situations. The value of ρ(nm) is therefore chosen

corresponding to the expected behaviour of the participating

vehicles. As a simple “mental model” [21], we assume that

the drivers have a strong tendency to avoid collisions only

when the time-to-collision tc is larger than their typical

reaction time tr, such that ρ(nm) ≈ 1 for t
(nm)
c ≪ tr and

ρ(nm) ≪ 1 for t
(nm)
c ≫ tr. We therefore set ρ(nm) according

to the heuristically chosen relation

ρ(nm) = (1 − ρmin) exp



−1

2

(

t
(nm)
c

tr

)2


+ ρmin (14)

where the parameter ρmin denotes the minimum possible

weight value. The time-to-collision t
(nm)
c is determined

based on the trajectory pair (nm). If no collision occurs,

we have ρ(nm) = 1. The reaction time tr is typically chosen

from the interval 0.5–1.0 s.

VI. EVALUATION

For evaluation of the proposed method, we evaluate sit-

uations on different intersections generated by two vehicles

approaching each other, respectively. Fig. 1 shows the data

set used in this work. It consists of real-world differential

GPS positions acquired during a test drive of 10 km. It

includes three intersections with vehicles approaching from

all possible directions, respectively. The GPS signals were

tracked over time by a Kalman filter and yield estimates of

the vehicle position, velocity, and orientation relative to a

global coordinate system. The test vehicle with the differ-

Fig. 1. Differential GPS data set obtained by a 10 km test drive. The three
intersections are denoted by I1, I2 and I3.

ential GPS sensor had no further sensors for environment

perception. In order to construct a situation at an intersec-

tion, we combined two separately recorded manoeuvres and

aligned their timestamps manually such that the time t = 0 is

defined as the moment in time when the last vehicle reaches

its minimum distance to the intersection centre. Thus, the

goal is to determine the earliest moment in time at which

the situation class is recognised correctly. We assume that

since the individual motion trajectories were acquired in real

traffic, the correspondingly constructed situations are fairly

realistic.

For motion prediction, the edges of the road are helpful for

penalising unlikely predictions such as driving into a wall.

Due to the sensor limitations of the test vehicle the edges

were extracted from a map. The road surface is divided into

quadratic grid cells, where each cell has a width of 0.24 m

and is attributed by a flag determining the occupancy.

The parameters are set as follows and are not changed

during the evaluation. The value of the decision boundary ε

of the QRLCS distance metric (cf. Eq. (1)) is determined by

the motion database and result in ε = [3.57, 3.57, 1.07, 0.05]
for differences in x and y position, velocity, and yaw rate,

respectively. The particle filter in the motion prediction

uses S = 100 particles. Further parameters for the motion

prediction are described in [15] and their values have not

been changed for this evaluation. In the situation classifier

method we use four Chebyshev coefficients, set the minimum

possible weight value to ρmin = 0.1 and the reaction time

to tr = 1.0 s.

Since the particle filter is a probabilistic approach, each

run on the same trajectory will give slightly different pre-

dictions. However, in [15] it is shown that these deviations

are reasonably small and the position standard deviation is

typically below 0.5 m for a prediction horizon of 2.0 s.

In our approach, first the prediction is performed for

each vehicle independently, then the MPTs were constructed

and classified, leading to a discriminant value for each

situation class. The influence of the interaction variable on

the situation recognition is examined based on an example



TABLE I

CLASS-SPECIFIC PROBABILITIES W (k) FOR THE SITUATION SHOWN IN

FIG. 2 WITHOUT (W/O) AND WITH (W) INTERACTION.

w/o w w/o w w/o w

LL 0.04 0.06 RL 0.00 0.00 GL 0.17 0.24
LG 0.41 0.19 RG 0.19 0.25 GG 0.00 0.01
LR 0.01 0.00 RR 0.11 0.13 GR 0.07 0.12

in which one of the individual predictions is erroneous.

Furthermore, we report a detailed analysis of the situation

recognition results in our test scenario.

A. Influence of the Interaction Variable

In cases where the proposed prediction method leads to

configurations implying a collision, the interaction variable

defined in Eq. (14) becomes relevant. An example of an

early RG situation is given in Fig. 2, where the red vehicle

turns right and the oncoming blue vehicle drives straight

on. Due to a false individual motion prediction obtained

for the red vehicle (turn-left with a probability of 0.49) the

situation is classified without the interaction variable as LG.

Table I shows the class probabilities with (w) and without

(w/o) using the interaction variable. Activating the interaction

variable leads to a correct classification of the RG situation

in this example.

Fig. 2. False prediction for the red vehicle. Icons denote the current pose
of each object. The dashed lines show the future positions (ground truth).
The solid lines attributed with likelihood values represent the individual
predictions. For the red vehicle, the (erroneous) turn-left prediction is the
most likely hypothesis.

B. Prediction of the Situation Class

The proposed method recognises the class of a given

situation. As a situation is a process in time, i.e. the vehicles

do not only approach each other but also the intersection

itself, at the beginning there is high uncertainty about the

current situation and in the end the correct situation class

can generally be determined with a low uncertainty. It is

thus desired to recognise the correct situation class as early

as possible.

For each situation class k an overall discriminant value

W (k) is estimated according to Eq. (13) by the polyno-

mial classifier. We define the certainty γkr
of a classified

situation class kr = argmaxk∈Ω W (k) by its difference to

the situation class with the second-largest discriminant value

kr2 = argmaxk∈Ω\{kr} W (k) as γkr
= W (kr)−W (kr2). If

γkr
exceeds a pre-defined threshold, the recognised situation

class is accepted. In the following, the value of this threshold

is set to 0.1.

At each test intersection Ii (cf. Fig. 3) one situation of each

class was generated based on the individual trajectories. We

have always taken into account the interaction variable given

by Eq. (14). Table II displays the values of trec indicating

the moment in time from which on the situation is correctly

classified according to the previously defined γkr
criterion

until the end of the situation at t = 0. The values of trec for

a certain intersection Ii were obtained using the trajectories

of the other two intersections Ij 6=i as training data in a leave-

one-out manner.

(a) I1 (bottom) (b) I2 (middle) (c) I3 (right)

Fig. 3. Three test intersections from Fig. 1 with extracted road edges and
possible manoeuvres for each vehicle.

The fact that all obtained trec values are negative indicates

that all situations have been successfully recognised at the

end. Some situation predictions are rather late, especially

for intersection I1. This observation can be explained by

the fact that its geometry is rather different from those

of intersections I2 and I3 used for training. Furthermore,

the small values of trec for intersection I1 are a result

of ambiguous or temporal erroneous individual prediction.

The median values of trec, however, are between −1.2 and

−2.3 s, indicating a reasonably early correct prediction. This

is especially true for the situation classes LL, LG, and GL,

which are the most hazardous ones since collisions may

occur as a result of the turn-left manoeuvre of one of the

vehicles. For illustration, Fig. 4 shows the vehicles at time

trec = −1.92 s, i.e. at the moment in which the situation

is just recognised correctly, for a situation of class LL. It

is apparent that both vehicles are just about to enter the

intersection, and their orientations are still nearly parallel

to the edges of the road, i.e. there are only weak indications

of a turning manoeuvre so far. The temporal behaviour of

the output discriminants in this example is shown in Fig. 5.

The situation class LL is recognised in a stable manner at

trec = −1.92 s.

VII. CONCLUSIONS AND FUTURE WORK

In this study we have described a method for the recogni-

tion of situations involving two vehicles at road intersections.



Fig. 4. Example of an early detection stage of a LL situation class at trec =
−1.92 s. The future position (ground truth) for a vehicle is represented by
the dashed line, whereas the solid lines represent the individual predictions.
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Fig. 5. Temporal behaviour of discriminant values of the LL situation
class at intersection I3. The time trec = −1.92 s denotes the moment in
which the situation is just recognised correctly.

For each vehicle, a possible set of future motion trajectories

has been estimated and rated based on a trajectory database

for a time interval of 2–4 seconds ahead. Realistic situations

were generated by a pairwise combination of individual

motion trajectories and classified according to nine categories

with a polynomial classifier. In the proposed framework,

situations are penalised for which the time to collision signif-

icantly exceeds the human reaction time. We have combined

the correspondingly favoured situations using a probabilistic

approach, resulting in a more reliable situation recognition

and collision detection than obtained based on independent

TABLE II

MOMENT OF CORRECT RECOGNITION trec FOR ALL SITUATION CLASSES.

Class I1 [s] I2 [s] I3 [s] median [s]

LL −2.16 −1.38 −1.92 −1.92
LG −0.14 −1.36 −1.26 −1.26
LR −0.47 −1.28 −1.54 −1.28
RL −0.70 −1.60 −1.96 −1.60
RG −0.72 −2.02 −0.38 −0.72
RR −0.39 −2.00 −1.62 −1.62
GL −0.52 −1.90 −2.32 −1.90
GG −0.22 −2.26 −2.38 −2.26
GR −0.44 −1.86 −1.70 −1.70

motion hypotheses. We have evaluated the method on a

real-world differential GPS data set acquired during a test

drive of 10 km, including three road intersections. We found

that our method is typically able to recognise the situation

correctly about 1–2 seconds before the distance between the

vehicles becomes minimal. Situations involving more than

two vehicles may be addressed by considering all possible

pairs of vehicles or by a one-versus-all approach.

REFERENCES

[1] T. Huang, D. Koller, J. Malik, G. Ogasawara, B. Rao, S. Russell,
and J. Weber, “Automatic symbolic traffic scene analysis using belief
networks,” in Proc. Nat. Conf. Art. Intell., vol. 2, 1994, pp. 966–972.

[2] N. Oliver and A. P. Pentland, “Graphical models for driver behavior
recognition in a smartcar,” in IEEE Proc. Intell. Veh. Symp., 2000, pp.
7–12.

[3] M. Brand, N. Oliver, and A. Pentland, “Coupled hidden markov
models for complex action recognition,” in IEEE Proc. Int. Conf. on

Computer Vision and Pattern Recognition, 1996.
[4] N. Oliver, B. Rosario, and A. Pentland, “A bayesian computer vision

system for modeling human interactions,” IEEE Trans. Pattern Anal.

Machine Intell., vol. 22, pp. 831–843, 1999.
[5] K. Nickel and R. Stiefelhagen, “Real-time person tracking and pointing

gesture recognition for human-robot interaction,” in Computer Vision

in Human Computer Interaction, ECCV Workshop, 2004, pp. 28–38.
[6] M. J. Black and A. D. Jepson, “A probabilistic framework for matching

temporal trajectories: Condensation-based recognition of gestures and
expressions,” in Proc. Eur. Conf. Comp. Vis. London, UK: Springer-
Verlag, 1998, pp. 909–924.

[7] A. E. Broadhurst, S. Baker, and T. Kanade, “Monte carlo road safety
reasoning,” in IEEE Proc. Intell. Veh. Symp. IEEE, June 2005, pp.
319 – 324.

[8] A. Eidehall and L. Petersson, “Statistical threat assessment for general
road scenes using monte carlo sampling,” IEEE Trans. Intell. Trans-
port. Syst., vol. 9, no. 1, pp. 137–147, march 2008.

[9] M. Althoff, O. Stursberg, and M. Buss, “Stochastic reachable sets of
interacting traffic participants,” in IEEE Proc. Intell. Veh. Symp., June
2008, pp. 1086–1092.

[10] T. Batz, K. Watson, and J. Beyerer, “Recognition of dangerous
situations within a cooperative group of vehicles,” in IEEE Proc. Intell.

Veh. Symp., June 2009, pp. 907–912.
[11] F. Large, D. A. Vasquez Govea, T. Fraichard, and C. Laugier,

“Avoiding cars and pedestrians using velocity obstacles and motion
prediction,” in IEEE Proc. Intell. Veh. Symp., 2004, pp. 375–379.

[12] N. Johnson and D. Hogg, “Learning the distribution of object trajec-
tories for event recognition,” Image and Vision Computing, vol. 14,
no. 8, pp. 609 – 615, 1996, 6th British Machine Vision Conference.

[13] W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank, “A system
for learning statistical motion patterns,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 28, no. 9, pp. 1450–1464,
2006.

[14] A. Croitoru, P. Agouris, and A. Stefanidis, “3d trajectory matching by
pose normalization,” in Proc. of the 13th annual ACM intl. workshop

on GIS, 2005, pp. 153–162.
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[20] J. Schürmann, Pattern classification: a unified view of statistical and

neural approaches. NY, USA: John Wiley & Sons, Inc., 1996.
[21] P. N. Johnson-Laird, “Mental models,” in Foundations of Cognitive

Science (Second Edition), M. I. Posner, Ed. Cambridge, MA: MIT
Press, 1990, pp. 469–499.


