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1 Overview 

Advanced driver assistance systems (ADAS) have to cope 

with complex traffic situations, especially in the road 

crossing scenario. To detect potentially hazardous situa-

tions as early as possible, it is therefore desirable to know 

the position and motion of the ego-vehicle and vehicles 

around it for several seconds in advance. The standard 

motion prediction approach is the so-called kinematic 

prediction, i.e. constant yaw rate and constant accelera-

tion, but it systematically fails at road intersections. The 

proposed approach uses previously observed driving ma-

noeuvres to find a low-dimensional representation of 

common motion patterns. A probabilistic filter with mode 

detection tracks the vehicle’s driving path and simultane-

ously predicts its motion several seconds ahead. Evalu-

ated on a Differential GPS trajectory dataset, the proposed 

system shows significantly better results than the standard 

prediction approach for different prediction horizons. 

2 Motion Prediction Method 

The proposed prediction system is a functional mapping 
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which takes the vehicle motion history for ∆T time steps 

as an input and predicts the vehicle motion ∆t time steps 

ahead (time horizon). 

2.1 Trajectory Concept 

We represent the motion patterns of vehicles by trajecto-

ries, which are defined as ordered tuples 
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combining states xi with a time stamp ti. Therefore, each 

trajectory element describes the current state of the 

tracked object over time. This representation does not de-

pend on a specific sensor type, and parts of the state may 

originate from different types of sensors. When applied to 

vehicle motion, the basic information is the object posi-

tion in the 2D plane and the orientation angle relative to 

the ego-vehicle, here termed yaw angle. Furthermore, we 

found it useful to additionally encode the temporal deriva-

tives, i.e. the velocity and the yaw rate, in the trajectory. 

Various trajectories may differ in their length N, which 

makes this representation unsuitable for most regression 

techniques. Therefore, we apply the Chebyshev decompo-

sition [1] to the trajectory representation in yaw angle and 

velocity components, which covers 99% of the trajectory 

information. This results in a trajectory representation as a 

vector of Chebyshev coefficients. 

2.2 Manifold Representation 

When a vehicle approaches an intersection, only a minor 

subset of possible yaw angle and velocity trajectory con-

figurations are likely to occur. We thus assume that the 

set of common motion patterns is embedded in a low-

dimensional sub-space of the Chebyshev coefficient 

space. 

The Unsupervised Kernel Regression (UKR) [2] 

spans a low-dimensional manifold in the original high-

dimensional space by the use of support vectors: 
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where yi denotes a support vector in the original coeffi-

cient space and xi is the corresponding support vector on 

the manifold, also known as latent variables. The kernel 

K(x) indicates the influence of each manifold support xi 

vector to its neighbours and is normally chosen to be in 

exponential or quadratic form. One should notice that the 

UKR method only maps from the embedded space to the 

original coefficient space but not vice versa. 

 

Figure 1 Motion prediction system with manifold and coefficient 

feature space. 



Figure 1 visualises the UKR mapping. In the motion pre-

diction system we make the support vector set {yi} inter-

changeable by two sets: The first set represents only the 

motion history Ht-∆T:t for comparison with an observed 

history, whereas the second set integrates both motion 

history Ht-∆T:t and future motion Ft:t+∆t into one vector CH,F 

for motion prediction. 

The latent variables xi are determined during a learn-

ing stage. As suggested by [2] these support vectors are 

initialised by applying the Local Linear Embedding 

(LLE) approach and are then further refined in an iterative 

gradient descend process on the re-projection error using 

the RPROP algorithm. The coefficient support vector set 

{yi}={CH,F
(i)

} is used during training. 

2.3 Motion Prediction 

As mentioned earlier, the UKR method is not able to pro-

vide a direct mapping from the coefficient space to latent 

space. Therefore, we utilise a probabilistic filter algorithm 

- namely a particle filter - as a temporal optimisation 

technique. The particle filter can handle multiple modes at 

the same time, i.e. if a vehicle approaches an intersection, 

the turning manoeuvres and straight driving are kept si-

multaneously until further information decides the direc-

tion. 

At the first iteration step, the particle set is equally 

distributed over the manifold. During the weight update 

step, each particle is projected by the UKR mapping into 

the coefficient space using the Ht-∆T:t support vectors, and 

each particle is then compared with the observed vehicle 

motion history. This results in a new weight value for 

each particle, by which the particles are drawn via impor-

tance sampling to a new particle set. 

A mean-shift algorithm [3] detects the current prob-

ability density modes. The centre of each mode describes 

a possible driving manoeuvre and is projected first into 

the coefficient space using the CH,F support vectors and 

then into the trajectory space to predict the vehicle motion 

(cf. Figure 1). 

4 Experimental Evaluation 

The proposed vehicle motion prediction is tested in a real-

world scenario with a Differential GPS (DGPS) dataset of 

approximately 23.6 km length (see Figure 2). Three inter-

sections have been traversed by every possible configura-

tion of driving manoeuvres. 

 

Figure 2 Bird’s eye view on the DGPS dataset. 

The motion prediction system is evaluated in a leave-one-

out manner, i.e. one intersection is taken for testing and 

the remaining ones to train the UKR method.  

Figure 3 shows the system’s predictive power (blue) 

for prediction horizons from 1.0 s to 4.0 s compared to the 

kinematic prediction (green), i.e. constant acceleration 

and constant curve radius. The positional error shows the 

Euclidean distance between the estimated position by the 

prediction method and the ground truth, i.e. the path actu-

ally driven in the future. The errors in yaw angle and ve-

locity indicate the deviation of the method’s estimate in 

each component. 

 

 

Figure 3 Prediction errors in position, yaw angle and velocity 

(vel) for various prediction horizons. Blue: output of the pro-

posed system; green: kinematic prediction. The lower, middle 

and upper bound depict the 25%, 50% and 75% quantiles, respec-

tively. 

5 Conclusion 

The results show a clear advantage by using learned mo-

tion patterns for prediction horizons of 2.0 s and above. 

However, a prediction horizon of 4.0 s usually does not 

yield an appropriate prediction because of a high error 

rate. Interestingly, the yaw angle error is quite stable for 

all prediction horizon values, while the velocity error 

causes the main distraction in the overall positional error 

for the proposed system. 
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