
Long-term Vehicle Motion Prediction

Christoph Hermes∗, Christian Wöhler†, Konrad Schenk† and Franz Kummert∗,
∗Bielefeld University, Faculty of Technology, Bielefeld, Germany

†Daimler AG Group Research, Environment Perception, Ulm, Germany

Abstract—Future driver assistance systems will have to cope
with complex traffic situations, especially in the road crossing
scenario. To detect potentially hazardous situations as early as
possible, it is therefore desirable to know the position and motion
of the ego-vehicle and vehicles around it for several seconds in
advance. For this purpose, we propose in this study a long-term
prediction approach based on a combined trajectory classification
and particle filter framework. As a measure for the similarity
between trajectories, we introduce the quaternion-based rota-
tionally invariant longest common subsequence (QRLCS) metric.
The trajectories are classified by a radial basis function (RBF)
classifier with an architecture that is able to process trajectories
of arbitrary non-uniform length. The particle filter framework
simultaneously tracks and assesses a large number of motion hy-
potheses (∼10

2), where the class-specific probabilities estimated
by the RBF classifier are used as a-priori probabilities for the
hypotheses of the particle filter. The hypotheses are clustered
with a mean-shift technique and are assigned a likelihood value.
Motion prediction is performed based on the cluster centre with
the highest likelihood. While traditional motion prediction based
on curve radius and acceleration is inaccurate especially during
turning manoeuvres, we show that our approach achieves a
reasonable motion prediction even for long prediction intervals
of 3 s for these complex motion patterns.

I. INTRODUCTION

Future driver assistance systems will have to be able to

interpret complex traffic situations, such as the road crossing

scenario, and will therefore have to estimate and predict the

position and motion state of the ego-vehicle and other vehicles

around it over time intervals as long as several seconds. For

example, such information will allow to assess the risk of

an upcoming situation. This is especially important at road

crossings, where potentially volatile situations often occur and

have to be distinguished from normal situations.

An object prediction based on the current state (i.e. position,

orientation, velocity) with the assumption of constant yaw

angle and acceleration is insufficient for long prediction inter-

vals because of different road shapes and driver behaviours.

Humans are able to learn motion patterns and to predict the

behaviour of traffic participants fairly accurately over time

when the history of the moving objects is known. Our basic

approach in this study is to adopt this capability of learning

motion patterns and use them to estimate the future object

position based on the motion history. For this reason we define

a rotationally invariant distance metric for trajectories and use

it both for an approximate direction guess provided by a radial

basis function (RBF) network and for a finer prediction step

where a particle filtering approach is applied. All methods are

based on a set of labelled trajectories.

II. RELATED WORK

To our knowledge, the problem of predicting a vehicle state

several seconds into the future has not yet been addressed by

many researchers. In [1] an explicit motion model is used to

gain a stochastic threat assessment of road objects populating

the environment. Similarly, in [2] a motion model is learned

from given trajectories using a clustering technique to predict

the object’s behaviour.

In the field of body-tracking, motion prediction based on

trajectories is more widely used. Echo State Networks are

applied in [3] to obtain a motion prediction of a robotic

system in local surroundings with main focus on real-time

applications. In [4], a body-tracking system is presented where

the motion is predicted with a particle filter approach based

on a motion database. Similarly, a set of motion hypotheses

is used in [5] to track a hand-forearm model of a worker in

an industrial scenario.

A key to predict motion based on trajectories is an efficient

matching technique to compare the vehicle history with the

dataset. A lot of research has been done in this field, starting

from different representations, e.g. polynomial descriptors [6],

turning angle representation [7], and curve signatures [8].

Matching methods based on string matching techniques for

raw trajectories (i.e. without change in representation) have

been proven to be successful. Examples are Dynamic Time

Warping [9], the Longest Common Subsequence [10], and

the Levenshtein Distance on Trajectories [5]. We will further

explore this idea in the following sections.

A concept strongly related to the topic of trajectory match-

ing are classifiers applied to trajectories. Often a trajectory

is converted into a feature representation, such that it can be

processed by standard classifiers [11].

III. TRAJECTORIES

Motion patterns are the core issue of this study. We

present them as trajectories X which consist of ordered tuples

X = ((x1, t1), . . . , (xN , tN)) combining states xi with a time

stamp ti. Therefore each trajectory element xi describes the

current state of the tracked object over time. This represen-

tation does not depend on a specific sensor type, and parts

of xi may originate from different types of sensors. When

applied to vehicle motion, the basic information is the object

position in the 2D plane and the orientation angle relative

to the ego-vehicle, here termed yaw angle. Furthermore, we

found it useful to additionally encode the temporal derivatives,

i.e. the velocity and the yaw rate, in the trajectory.

A. Distance Metric on Trajectories

In this study, trajectories are compared to infer a prediction

of the motion state. In order to find an appropriate matching

method, we define the following requirements to the metric:

1) Handling of different sampling rates: Different sensor

types run at different frequencies.

2) Insensitivity to outliers: Noisy data is likely to occur.

3) Different lengths of trajectories: Different motion pat-

terns are not restricted to uniform time windows.

4) Translational invariance: Similar motion patterns do not

depend on the starting point.

5) Rotational invariance: Similar motion patterns do not

depend on direction, and their comparison needs to be

independent of the observer’s viewpoint.

The longest common subsequence (LCS) metric [10] on

trajectories has been shown to be an adequate metric and can

handle these stated requirements, except the last two issues.

We thus adopted the LCS metric and applied the property

of rotational invariance by using the method in [12] which

finds the optimal orthogonal transformation to superimpose

two point sets based on quaternions.

B. Longest Common Subsequence (LCS)

The LCS metric originates in the field of string matching

algorithms and returns the length of the longest common

substring matched by two strings. To apply this technique

to trajectories, a similarity matching function between two

states (points) ai and bj from the given trajectory points

(ai, t
(a)
i) ∈ A and (bj , t

(b)
j) ∈ B has to be defined. Vlachos

et al. [10] use the minimum standard deviation std
(d)
min =

min{std(A(d)), std(B(d))} in each dimension d as a decision

boundary and apply a sigmoid function to smooth the distance

value in the range [0, std
(d)
min]. In our approach it is sufficient

to use a linear function to obtain the distance between ai and

bj , where L1(·) denotes the L1 norm (Manhattan distance):

dist(ai,bj) =







0 if ∃d ∈ D : L1(a
(d)
i , b

(d)
j) > std

(d)
min

1
D

∑D
d=1

(

1 − L1(a
(d)

i
,b

(d)

j
)

std
(d)
min

)

otherwise

(1)

The sizes of the trajectories A and B are denoted by

NA and NB , respectively, corresponding to the num-

ber of motion states they comprise, and the sequence

[(a1, t
(a)
1), . . . , (aNA−1, t

(a)
NA−1)] by head(A). We then define

the LCS on trajectories as follows:

LCS(A, B) =






















0 if NA = 0 ∧ NB = 0
LCS(head(A), head(B)) + dist(aNA

,bNB
)

if dist(aNA
,bNB

) 6= 0
max{LCS(head(A), B), LCS(A, head(B))}

otherwise

(2)

The distance between two trajectories A and B can then be

obtained by

distLCS(A, B) = 1 − LCS(A, B)

min{NA, NB} (3)

with distLCS(A, B) ∈ [0, 1].

C. Quaternion-based Rotationally Invariant LCS (QRLCS)

The LCS can be computed by the dynamic programming

algorithm in O(n2) time using tables where partial (optimal)

results of the algorithm are stored. We extend these optimal

solutions by rotation and translation.

The best translation of a trajectory A to a trajectory B can

be obtained using the mean values µ
(x,y)
A and µ

(x,y)
B of the two

point sets in the xy plane. For the LCS dynamic programming

algorithm an incremental version can be formulated according

to

µ
(x,y)
t,A =

1

t

t
∑

i=1

a
(x,y)
i =

t − 1

t
µ

(x,y)
t−1,A +

1

t
a

(x,y)
t . (4)

Kearsley [12] uses quaternions to superimpose two point sets

(in that case atoms from different molecules) by finding the

best rotation when the corresponding point pairs are known.

This idea can be applied to trajectories in a similar way: A

quaternion can be considered as a row matrix of four numbers

or the combination of a scalar with a 3D Cartesian vector,

Q = [q1, q2, q3, q4] ≡ [q1,q]. The appropriate unit quaternion

Q̂ can be used as a rotation operator on a three-dimensional

vector x as follows, where vectors are treated as quaternions

with zero scalar component:

[0,xR] = Q̂−1[0,x]Q̂ (5)

It should be noted that a rotation quaternion can be constructed

when the rotation angle α and the three-dimensional rotation

vector u are known:

Qrot = [cos (α/2) , sin (α/2)u] (6)

When rotating a trajectory point a
(x,y)
i to match another

point b
(x,y)
j there will be a residual quaternion [0, e] =

[0,b
(x,y)
j , 0] − Q̂−1[0,a

(x,y)
i , 0]Q̂. This can be used to for-

mulate a residual function ε = |Q̂|2∑k |e|2 which computes

the error over all associated point pairs {(a(x,y)
i ,b

(x,y)
j)}k.

By minimising ε with respect to a given rotation vector

u = [0, 0, 1] perpendicular to the ground plane, the problem

reduces to an eigenvalue problem where

xm,k = (b
(x)
j,k − µ

(x)
B) − (a

(x)
i,k − µ

(x)
A) (7)

xp,k = (b
(x)
j,k − µ

(x)
B) + (a

(x)
i,k − µ

(x)
A) (8)

with similar definitions for ym,k and yp,k:

(∑

k(x2
m,k + y2

m,k)
∑

k(xp,kym,k − xm,kyp,k)
∑

k(xp,kym,k − xm,kyp,k)
∑

k(x2
p,k + y2

p,k)

)

(

q1

q4

)

= λ

(

q1

q4

)

The two eigenvectors of this symmetric matrix incorporate

the first and the last component of a unit quaternion Q̂rot =
[q1, 0, 0, q4]. The smallest and largest eigenvalues of the cor-

responding eigenvectors represent rotations that minimise and

Fig. 1. Matching of two trajectories in the xy plane by QRLCS. A cross
depicts the starting point of each trajectory. The red trajectory is translated
and rotated to the blue trajectory.

maximise the sum of the mutual distances between all assigned

trajectory points.

In the LCS dynamic programming algorithm every trajec-

tory point pair is tested whether its distance value is below

the standard deviation threshold (see Eq. 1). If this condition

is met, the distance value influences the LCS value. For the

rotation and translation this results in computing the complete

matrix each time a new trajectory point pair is added to give

the best partial solution. To tackle this problem in the dynamic

programming way, we suggest storing the partial values of the

matrix from the last (K − 1) point assignments and simply

update the matrix (sub-)elements when a new point pair is

found to be similar:

K
∑

k=1

x2
m,k = γ

(1,x)
K−1 + (b

(x)
j,K − a

(x)
i,K)2 − K(µ

(x)
K,B − µ

(x)
K,A)2

K
∑

k=1

(xp,kym,k − xm,kyp,k) = 2γ
(2)
K−1

+ 2(a
(x)
i,Kb

(y)
j,K − b

(x)
j,Ka

(y)
i,K)

+ 2K(µ
(y)
K,Aµ

(x)
K,B − µ

(y)
K,Bµ

(x)
K,B)

K
∑

k=1

x2
p,k = γ

(3,x)
K−1 + (b

(x)
j,K + a

(x)
i,K)2 − K(µ

(x)
K,B + µ

(x)
K,A)2

where
γ

(1,x)
K =

K
∑

k=1

(b
(x)
j,K − a

(x)
i,K)2 (9)

γ
(2)
K =

K
∑

k=1

(a
(x)
i,Kb

(y)
j,K − b

(x)
j,Ka

(y)
i,K) (10)

γ
(3,x)
K =

K
∑

k=1

(b
(x)
j,K + a

(x)
i,K)2 (11)

The matrix sub-elements
∑K

k=1 y2
m,k and

∑K

k=1 y2
p,k can be

computed in a similar way based on the corresponding values

γ
(1,y)
K and γ

(3,y)
K , respectively.

Fig. 1 shows an example with two test trajectories. The

assignments are recorded during QRLCS computation. At each

assignment test in the dynamic programming algorithm, the

values of µ
(x,y)
K,A , µ

(x,y)
K,B , γ

(1,{x,y})
K , γ

(2)
K , and γ

(3,{x,y})
K are

stored to obtain the best partial solution, similar to the partial

LCS values.

IV. TRAJECTORY CLASSIFICATION

A straightforward approach to the classification of tra-

jectories consists of treating the first (i.e. most significant)

n coefficients of the Chebyshev decomposition [13] of the

velocity and yaw angle components of each trajectory as a

feature vector of length n. These vectors are used as input to

a standard classifier architecture. For this purpose, we applied

the well-known second-order polynomial classifier [14] with

ideal output vectors τ = [1, 0] for trajectories of class “turn

left” and τ = [0, 1] for trajectories of class “straight on”. This

straightforward feature extraction and classification approach,

however, turned out to be of limited value since a turn-left

manoeuvre is often not recognised as such before it has almost

been completed (cf. Section VI).

An alternative classification approach is to directly utilise

the QRLCS distance metric within the framework of a radial

basis function (RBF) network classifier [14]. The RBFs are

radially symmetric Gaussians according to

ωp(A) = exp
[

−ηp (distLCS(A, Cp))
2
]

(12)

with distLCS(·) as the QRLCS distance metric defined in

Eq. 3, Cp as the p-th prototype of the RBF network, and

ηp as the width parameter of the p-th RBF. The number of

classes is given by Nc, the overall number of prototypes and

thus RBFs by NP = cNc, and each class is represented by

the same number c of prototypes. The output vector δ(A) of

the RBF network for an input pattern A is then given by

δ(A) = W · Ω(A) (13)

with Ω(A) as the vector of length NP made up by the RBF

values ωp(A) and W as a Nc×NP weight matrix. We assume

a training set consisting of M samples. Each sample has an

associated desired output vector τm as defined above for the

polynomial classifier and a corresponding RBF output vector

δm. The RBF network is trained by minimising the error

function

ERBF =

M
∑

m=1

‖δm − τm‖2
(14)

with respect to the elements Wkp of the weight matrix W ,

the width parameters ηp, and the prototypes Cp. Minimisation

with respect to Wkp and ηp is performed based on the

gradient descent technique. Generally each training sample

has a different length, such that no feature space of a given

dimension exists in which each point may in principle repre-

sent a RBF prototype, and the prototypes cannot be determined

based on a standard continuous optimisation technique. Hence,

we restrict the space of possible prototypes to the training

samples themselves, determining the set of NP prototypes

that minimise the error function ERBF according to Eq. 14 by

an exhaustive search over the training set after each gradient

descent step for Wkp and ηp.

V. MOTION PREDICTION

In this study, we implement motion prediction as a proba-

bilistic tracking framework. Given a history of measurements,

i.e. a trajectory M1:t up to a current time t, we intend to

predict the object state φT at a specific point in time T in the

future. The uncertainty of this prediction can be formulated as

a distribution p(φT |M1:t), which is rewritten as

p(φT |M1:t) = p(φT |Ψt) p(Ψt|M1:t), (15)

where we have incorporated the current object state Ψt.

The distribution p(φT |Ψt) is the likelihood of observing the

predicted state φT when the current object state Ψt is given.

This can be roughly approximated by the output of a classifier

which returns the mapped class contributions as a likelihood

of being a turn-left or a straight-on trajectory when the sub-

trajectory is given.

In Eq. 15 the current state Ψt is taken into account. In the

context of trajectories, it represents a sequence of trajectory

points (a sub-trajectory) including the position at the current

time t and its history over a given travelled distance d.

We choose a distance window instead of a time window

because the characteristics of vehicle motion are represented

by the travelled distance, while the motion history especially

of objects which are standing or moving slowly may be less

meaningful when integrated over a uniform time interval.

Applying the Bayes rule on the remaining distribution

p(Ψt|M1:t) results in an estimation of the current state based

on the current measurement and the previous states according

to

p(φT |M1:t) = η p(φT |Ψt) p(M1:t|Ψt)
∫

p(Ψt|Ψt−1) p(Ψt−1|M1:t−1) dΨt−1 (16)

with η as a normalisation constant. This distribution is rep-

resented by a set of samples or particles {Ψ(s)
t }S , which

are propagated in time using a particle filter [15]. Therefore,

each particle Ψ
(s)
t represents a sub-trajectory for the current

state. The distribution p(M1:t|Ψt) represents the likelihood

that the measurement trajectory M1:t can be observed when

the model trajectory is given; it can be obtained by the QRLCS

metric. According to [4], it is sufficient to sample the particles

from the distribution p(Ψt|Ψt−1) from a motion database as

follows, resulting in an efficient implicit probabilistic motion

model. In a first step, the trajectory database is structured by

creating samples with overlapping windows of equal travelled

distances d. Because this procedure creates sub-trajectories

with different numbers of points, we applied the Chebyshev

decomposition [13] to the velocity and yaw angle components

of the trajectories to obtain a vector of Chebyshev coefficients

[cv, ca] for the velocity and the yaw angle, respectively.

Following the approach in [4], a dimensionality reduction is

performed using principal component analysis (PCA) [14].

The particles are also transformed to this low-dimensional

coefficient space.

The database of samples is then structured into a binary tree

using the previously determined coefficients. The top node

in the tree corresponds to the coefficient that captures the

dimension of largest variance in the database, where lower

levels capture the finer motion structure. At each level l a sub-

trajectory i is assigned to the left sub-tree when its coefficient

ci,l < 0 and assigned to the right one if ci,l ≥ 0. Each of the

Fig. 2. Binary tree construction out of two sample trajectories. Each leaf has
a list of pointers to the appropriate location on the trajectory. These samples
overlap to obtain a finer scanning.

Fig. 3. Predicted states: The blue line depicts the motion history with the
estimated current object position (blue square). The green square indicates the
point on the trajectory where the curve radius gets below 200 m. The red lines
denote the trajectories consistent with the motion history, where the strength
of the colour corresponds to the weight value. The resulting hypotheses (two
seconds prediction interval) obtained by the mean-shift method are shown as
diamonds, where the largest symbol denotes the most probable position. The
ground truth is shown as a circle.

leaf nodes contains an index into the motion database. This

concept is depicted in Fig. 2. As noted in [4], a balanced tree

is constructed.

Sidenbladh et al. [4] argue that sampling particles from the

state transition distribution p(Ψt|Ψt−1) can be approximated

by a probabilistic search in the database. When a particle

reaches a leaf, the prediction step is performed by shifting the

particle (i.e. the sub-trajectory) with the appropriate time over

the trajectory to which the leaf points. The probabilistic search

depends on the particle represented by its PCA-transformed

Chebyshev coefficients ci. At each level l in the binary tree it

is decided with the probability

pright = p(ct,l ≥ 0|ci,l) =
1√

2πβσl

∫ ci,l

z=−∞

e
− z2

2βσ2
l dz (17)

whether the particle is moved to the right subtree, otherwise

the left one is chosen. The value β is a temperature parameter

describing the spreading deviation around each particle ci. The

higher the value of β, the more likely it is that new regions

of interest are explored. The variances σ2
l are normalisation

factors and correspond to the eigenvalues of the covariance

matrix computed for determining the PCA of the Chebyshev

coefficients.

Since the distribution of the predicted states p(φT |M1:t)
is approximated by means of the particle filter, the estimated

states φ
(s)
T can be obtained by looking ahead for a specific

time interval ∆T from the current object states Ψ
(s)
t on the

associated trajectories. This results in many hypotheses which

often lie closely together. To condense this set into a small

number of hypotheses, we apply a mean shift method [16],

[17]. The key idea is to estimate the local densities of the

predicted states φ
(s)
T by constructing a kernel over each state

and then to shift the states iteratively towards higher densities

with the mean shift vector

mh,g(φ
(s)
T) =

∑S
i=1 φ

(i)
T w(s) g

(

∣

∣

∣

∣

∣

∣

∣

∣

φ
(s)

T
−φ

(i)

T

h

∣

∣

∣

∣

∣

∣

∣

∣

2
)

∑S

i=1 w(s) g

(

∣

∣

∣

∣

∣

∣

∣

∣

φ
(s)

T
−φ

(i)

T

h

∣

∣

∣

∣

∣

∣

∣

∣

2
) − φ

(s)
T ,

(18)

where w(s) = p(φ
(s)
T |M1:t) denotes the weight of a particle,

g(x) = −G′(x) is the derivative of a kernel function G(x), and

h is the kernel width. In this work we use a Gaussian kernel

G(x) = exp
[

− 1
2x2
]

. The shifting procedure is repeated until

no particle moves any longer. Then the inferred cluster centres

are reweighted according to the particle weights of their mem-

bers. The result of this method are several weighted hypotheses

of the predicted state for each time step. The hypothesis with

the highest weight is taken as the final prediction state. An

example is shown in Fig. 3.

VI. RESULTS

For evaluation of the proposed method, we use a data set

consisting of vehicle odometry data, where the trajectories

are given as velocity and yaw rate values at discrete time

steps. In order to retrieve the time-dependent position these

values are integrated over time. To examine the ability of the

system to distinguish between different vehicle manoeuvres, a

data set containing turn-left manoeuvres and straight-on drives

performed by eight different drivers on five different road

crossings was recorded, resulting in 938 trajectories.

For comparison with the proposed method, we simulta-

neously apply a standard extrapolation technique assuming

constant acceleration and curve radius with respect to the

current vehicle state. All prediction results are compared to

the ground truth provided by the odometry data. Besides the

position error, we also state the errors for the velocity, yaw

angle, and yaw rate, as they represent important characteristics

of the predicted vehicle state.

Training of the polynomial and the RBF classifier as well as

the construction of the trajectory database for particle filtering

is performed using the trajectories obtained on four road cross-

ings, leaving one crossing out for testing. For the polynomial

classifier, the rate of correctly classified trajectories is higher

than 99% on the test set. However, all “turn left” trajectories in

the training set and the test set display full turning manoeuvres,

which reduces the distinction between them and the “straight

on” trajectories to a fairly easy problem. Keeping in mind

the actual goal of motion prediction, an early recognition of

the turning manoeuvre is highly desirable. In this context, we

found that if a “turn left” trajectory that develops over time is

30 40 50 60 70 80 90 100
−10

0

10

20

30

40

x [m]

y
 [

m
]

(a)

30 40 50 60 70 80 90 100
−10

0

10

20

30

40

x [m]

y
 [

m
]

(b)

Fig. 4. Example of trajectory classification (left: polynomial classifier on
Chebyshev coefficients; right: RBF classifier) with two classes “straight on”
(blue dots) and “turn left” (red circles).

analysed by the polynomial classifier at each time step, it is

not recognised as such before reaching the maximal yaw rate,

i.e. when the turning manoeuvre has almost been completed

(cf. Fig. 4a). Adding partial trajectories of the “turn left”

class to the training set, displaying a straight-on phase and

the beginning of a turning manoeuvre, leads to contradictory

labels for similar feature vectors and thus to the degradation

of classifier performance.

We found that the RBF classifier in combination with

the QRLCS metric recognises a turning manoeuvre much

earlier than the quadratic polynomial classifier applied to the

Chebyshev coefficients (cf. Fig. 4b) for the result of a RBF

architecture with c = 3 prototypes per class). At the same time,

the rate of correctly classified trajectories remains higher than

99% on the test set.

In the particle filter system we use S = 200 particles,

50 Chebyshev coefficients in each dimension, c = 3 RBF

prototypes per class, a temperature parameter of β = 0.8, a

travelled distance of d = 30 m and a mean-shift kernel width

of h = 4.0 m.

Since the particle filter is a probabilistic approach, each

run on the same trajectory will give slightly different results.

To examine if the standard deviation of the prediction result

remains reasonably small, the turning part of a single test

trajectory (cf. Fig. 3) was regarded and the particle filter

system was run 30 times for a prediction interval of 2 s. The

resulting average prediction error and its standard deviation are

shown in Fig. 5 along with the prediction error of the standard

model. The prediction behaviour of the particle filter approach

is superior during the turning manoeuvre, where the prediction

of the standard model displays gross errors especially for the

yaw angle and the yaw rate.

Furthermore, we have evaluated the results for prediction

intervals of 1, 2, and 3 s for the particle filter system and

the reference prediction model. The corresponding root-mean-

square prediction errors are given in Table I. The prediction

accuracy of the particle filter approach is significantly higher

than that of the standard model especially for the yaw angle

and the yaw rate even for a short prediction interval of 1 s.

Table II shows the RMSE on a set of 24 test trajectories

acquired by eight different drivers. Results are given for the

standard prediction model (M) and the particle filter without

classifier (PF), with polynomial classifier (PF+PC), and with

RBF classifier (PF+RBF), where the prediction interval is 3 s.

7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
0

1

2

3

4

5

6

7

8

t [s]

p
o
s
it
io

n
 e

rr
o
r

[m
]

PF + RBF

standard method

(a) Position error

7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

t [s]

v
e
lo

c
it
y
 e

rr
o
r

[m
/s

]

PF + RBF

standard method

(b) Velocity error

7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
−40

−30

−20

−10

0

10

20

30

40

50

60

t [s]

y
a
w

 a
n
g
le

 e
rr

o
r

[d
e
g
]

PF + RBF

standard method

(c) Yaw angle error

7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
−30

−20

−10

0

10

20

30

40

t [s]

y
a
w

 r
a
te

 e
rr

o
r

[d
e
g
]

PF + RBF

standard method

(d) Yaw rate error

Fig. 5. Errors and standard deviations over time for a turning manoeuvre at a single test trajectory (cf. Fig. 3), prediction interval 2 s, 30 runs of the particle
filter with RBF classifier.

TABLE I
RMSE FOR DIFFERENT PREDICTION INTERVALS FOR THE TRAJECTORY

AND THE PERIOD OF TIME REGARDED IN FIG. 5. PF+RBF: PARTICLE

FILTER COMBINED WITH RBF CLASSIFIER; M: STANDARD MODEL.

position velocity yaw angle yaw rate
[m] [m/s] [deg] [deg/s]

1 s PF+RBF 0.7±0.0 0.4±0.0 3.6±0.4 6.5±0.4
M 0.4 0.5 6.7 12.3

2 s PF+RBF 1.4±0.1 0.9±0.1 11.5±1.1 11.1±0.7
M 3.0 1.4 27.1 23.7

3 s PF+RBF 5.0±0.6 2.4±0.2 27.2±1.6 15.8±0.5
M 6.3 2.2 45.6 27.4

TABLE II
RMSE FOR 24 TEST TRAJECTORIES ACQUIRED BY EIGHT DIFFERENT

DRIVERS AT A CROSSING NOT CONTAINED IN THE TRAINING SET.

position velocity yaw angle yaw rate
[m] [m/s] [deg] [deg/s]

PF straight 7.5±2.6 3.0±1.1 28.4±12.7 18.3±6.7
turn 7.6±2.0 1.8±0.7 30.2±11.7 10.3±2.7

PF+PC straight 10.9±3.8 4.5±1.3 29.9±14.1 19.1±6.7
turn 12.1±5.1 3.6±1.7 47.4±14.9 12.1±2.6

PF+RBF straight 7.6±3.0 3.0±1.3 27.8±11.0 18.3±6.9
turn 7.7±2.1 1.8±0.8 30.0±11.9 10.3±3.0

M straight 4.3±1.3 2.3±0.9 28.6±10.7 18.9±6.8
turn 10.2±2.7 4.0±1.6 63.3±23.2 27.3±10.7

The label “turn” refers to the turning manoeuvre phase of each

trajectory, which we defined to begin when the curve radius

gets below 200 m. Using PF+PC leads to an unfavourable

prediction performance. In the straight parts of the trajectories,

the position and velocity errors of the standard model are

slightly lower than those of the PF configurations, while

the yaw angle and yaw rate errors are similar. During the

turning manoeuvres, the prediction performance of PF+RBF

is strongly superior to that of the standard model. It is similar

to that of the PF alone, but specific information about the

moment in time when a turning manoeuvre begins is provided.

VII. CONCLUSION

In this study we have presented a method that predicts

the motion state of vehicles several seconds into the future

based on trajectory classification and simultaneous tracking

of multiple hypotheses with a particle filter framework. The

classifier output is used as a probabilistic filter for the particle

filter based prediction part. Compared to a traditional constant

acceleration and curve radius prediction model, the accuracy of

the proposed particle filter approach is superior during turning

manoeuvres displaying complex motion patterns.

REFERENCES

[1] A. Eidehall and L. Petersson, “Statistical threat assessment for general
road scenes using monte carlo sampling,” IEEE Transactions on Intel-

ligent Transportation Systems, vol. 9, no. 1, pp. 137–147, 2008.
[2] F. Large, D. A. Vasquez Govea, T. Fraichard, and C. Laugier, “Avoiding

cars and pedestrians using velocity obstacles and motion prediction,” in
Proc. of the IEEE Intelligent Vehicle Symp., June 2004.

[3] S. Hellbach, S. Strauss, J. Eggert, E. Körner, and H.-M. Gross, “Echo
state networks for online prediction of movement data - comparing
investigations.” in ICANN (1), ser. Lecture Notes in Comput. Sci., vol.
5163. Springer, 2008, pp. 710–719.

[4] H. Sidenbladh, M. J. Black, and L. Sigal, “Implicit probabilistic models
of human motion for synthesis and tracking,” in ECCV. London, UK:
Springer-Verlag, 2002, pp. 784–800.

[5] M. Hahn, L. Krüger, and C. Wöhler, “3d action recognition and long-
term prediction of human motion.” in ICVS, ser. Lecture Notes in
Computer Science, A. Gasteratos, M. Vincze, and J. K. Tsotsos, Eds.,
vol. 5008. Springer, 2008, pp. 23–32.

[6] A. Naftel and S. Khalid, “Classifying spatiotemporal object trajectories
using unsupervised learning in the coefficient feature space,” Multimedia
Systems, vol. 12, no. 3, pp. 227–238, December 2006.

[7] S. D. Cohen and L. J. Guibas, “Partial matching of planar polylines
under similarity transformations,” in Symp. on Discr. Algorithms, 1997.

[8] A. Croitoru, P. Agouris, and A. Stefanidis, “3d trajectory matching by
pose normalization,” in Proc. of the 13th annual ACM intl. workshop

on GIS. New York, NY, USA: ACM Press, 2005, pp. 153–162.
[9] D. J. Berndt and J. Clifford, “Using dynamic time warping to find

patterns in time series,” in Proc. of KDD, Seattle, Washington, Jul. 1994,
pp. 359–370.

[10] M. Vlachos, G. Kollios, and D. Gunopulos, “Elastic translation invariant
matching of trajectories,” M.. Learn., vol. 58, no. 2-3, pp. 301–334, ’05.

[11] X. Li, W. Hu, and W. Hu, “A coarse-to-fine strategy for vehicle motion
trajectory clustering,” in ICPR: Proc. of the 18th ICPR. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 591–594.

[12] S. K. Kearsley, “On the orthogonal transformation used for structural
comparisons,” Acta Cryst., vol. A45, pp. 208–210, 1989.

[13] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical

Recipes in C, 2nd ed. Cambridge University Press, 1992, ch. 5.8
Chebyshev Approximation, pp. 190–194.

[14] J. Schürmann, Pattern classification: a unified view of statistical and

neural approaches. NY, USA: John Wiley & Sons, Inc., 1996.
[15] M. J. Black and A. D. Jepson, “A probabilistic framework for matching

temporal trajectories: Condensation-based recognition of gestures and
expressions,” in ECCV. London, UK: Springer, 1998, pp. 909–924.

[16] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward
feature space analysis,” IEEE Transactions on PAMI, vol. 24, no. 5,
pp. 603–619, 2002.

[17] J. Schmidt, J. Fritsch, and B. Kwolek, “Kernel particle filter for real-
time 3d body tracking in monocular color images,” in Proc. of the 7th

Intl. Conf. on Automatic Face and Gesture Recognition. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 567–572.

